Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Viruses ; 15(3)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36992466

RESUMEN

In recent decades, waves of yellow fever virus (YFV) from the Amazon Rainforest have spread and caused outbreaks in other regions of Brazil, including the Cerrado, a savannah-like biome through which YFV usually moves before arriving at the Atlantic Forest. To identify the vectors involved in the maintenance of the virus in semiarid environments, an entomological survey was conducted after confirmation of yellow fever (YF) epizootics at the peak of the dry season in the Cerrado areas of the state of Minas Gerais. In total, 917 mosquitoes from 13 taxa were collected and tested for the presence of YFV. Interestingly, mosquitoes of the Sabethes genus represented 95% of the diurnal captured specimens, displaying a peak of biting activity never previously recorded, between 4:30 and 5:30 p.m. Molecular analysis identified three YFV-positive pools, two from Sabethes chloropterus-from which near-complete genomes were generated-and one from Sa. albiprivus, whose low viral load prevented sequencing. Sa. chloropterus was considered the primary vector due to the high number of copies of YFV RNA and the high relative abundance detected. Its bionomic characteristics allow its survival in dry places and dry time periods. For the first time in Brazil, Sa. albiprivus was found to be naturally infected with YFV and may have played a role as a secondary vector. Despite its high relative abundance, fewer copies of viral RNA were found, as well as a lower Minimum Infection Rate (MIR). Genomic and phylogeographic analysis showed that the virus clustered in the sub-lineage YFVPA-MG, which circulated in Pará in 2017 and then spread into other regions of the country. The results reported here contribute to the understanding of the epidemiology and mechanisms of YFV dispersion and maintenance, especially in adverse weather conditions. The intense viral circulation, even outside the seasonal period, increases the importance of surveillance and YFV vaccination to protect human populations in affected areas.


Asunto(s)
Culicidae , Virus de la Fiebre Amarilla , Humanos , Animales , Virus de la Fiebre Amarilla/genética , Estaciones del Año , Brasil/epidemiología , Mosquitos Vectores
2.
Mem Inst Oswaldo Cruz ; 117: e220127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36478156

RESUMEN

BACKGROUND: In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES: To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS: A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS: When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS: A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.


Asunto(s)
Virus de la Fiebre Amarilla , Virus de la Fiebre Amarilla/genética , Filogenia , Brasil/epidemiología
3.
Mem. Inst. Oswaldo Cruz ; 117: e220127, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1405996

RESUMEN

BACKGROUND In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...